您好,欢迎来到维库电子市场网 登录 | 免费注册

Kneron发布新一代终端人工智能处理器NPU IP-KDP Series

类别:新品快报  出处:中电网  发布于:2018-09-14 16:57:54 | 118 次阅读

  专注于终端人工智能解决方案的新创公司耐能 (Kneron) 今日参与在上海举行的 Arm 人工智能开发者全球峰会,以“可重构算法在AI芯片中的应用”为主题发表演说,会中同时发布 Kneron 新一代终端人工智能处理器系列 NPU IP - KDP Series。Kneron 第二代NPU IP 包括三大产品,分别为超低功耗版 KDP 320、标准版 KDP 520、以及高效能版 KDP 720。全系列产品的功耗低于0.5瓦(W),采用新的架构设计让运算更具弹性,整体效能相较于上一代产品大幅提升达3倍,运算能力 (peak throughput) 最高可达5.8 TOPS(每秒万亿次运算)(注一)。
  Kneron 创始人兼 CEO 刘峻诚表示:“Kneron 推出为终端装置所设计的人工智能处理器 NPU IP后,其超低功耗的优势受到市场高度关注。Kneron 新一代 NPU 产品在诸多方面取得显着的突破,基于第一代产品的优势,我们改善数据运算流程、提升整体运算效能与储存资源使用率,同时针对不同的神经网络模型进行优化,让 NPU 可以更广泛地应用在各种终端装置,并满足更复杂的运算需求。”
  Kneron NPU IP 可应用在智能手机、智能家居、智能安防、以及各种物联网设备上,让终端装置在离线环境下就能运行各种神经网络。Kneron 第二代 NPU IP 采用新的交错式运算架构 (Interleaving computation architecture) 设计,缩短运算流程和提升效率。深度压缩 (Deep compression) 技术让压缩功能从模型层级深入至数据和参数层级,使压缩率再提升。动态储存资源分配功能提升储存资源利用率,却不影响运算效能。此外,支持更广泛的卷积神经网络 (Convolutional Neural Networks, CNN) 模型,并针对各种 CNN 模型分别进行优化,在不同神经网络模型下,可提升约1.5倍至3倍不等的效能。
  第二代 NPU IP-KDP Series 重点技术说明:
  交错式运算架构设计:透过交错式架构,让神经网络架构中主要的卷积 (convolution) 与池化 (pooling) 运算可平行进行,以提升整体运算效率。在新的卷积层中,还可同时支持 8bits 与 16bits 的定点运算 (fixed point),让运算更有弹性。
  深度压缩技术:不仅能执行模型压缩,还能对运行中的数据和参数 (coefficient) 进行压缩,减少内存使用。模型大小可压缩至50分之一以下,准确度的影响率小于1%。
  动态储存资源分配:让共享内存 (shared memory) 和运作内存 (operating memory) 之间可以进行更有效的资源分配,提升储存资源利用率的同时却不影响运算效能。
  CNN模型支持优化:支持更广泛的 CNN 模型,包括 Vgg16、Resnet、GoogleNet、YOLO、Tiny YOLO、Lenet、MobileNet、Densenet 等,而且针对不同 CNN 模型分别进行优化,在不同神经网络模型下,相较上一代产品提升约1.5倍至3倍效能。
  注一:运算效能会因纳米制程不同而异。5.8 TOPS 为 KDP720 在 28 纳米制程、600 MHz、8bit fixed points 下的效能表现,预测运行功耗在 300-500mW(估计每瓦效能为13.17 TOPS/W)。

 

关键词:智能处理器 

全年征稿 / 资讯合作

稿件以电子文档的形式交稿,欢迎大家砸稿过来哦!

联系邮箱:3342987809@qq.com

版权与免责声明

凡本网注明“出处:维库电子市场网”的所有作品,版权均属于维库电子市场网,转载请必须注明维库电子市场网,http://www.dzsc.com,违反者本网将追究相关法律责任。

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

热点排行