您现在的位置:维库电子市场网 > 元器件 > 变压器 > 变压器铁(磁)芯

优质变压器铁芯【*】

供应优质变压器铁芯【*】
供应优质变压器铁芯【*】
普通会员
  • 企业名:杭州裕正电子有限公司

    类型:生产加工

    电话: 0571-85229805

    联系人:曾军

    地址:浙江杭州西湖经济科技园西园三路10号1幢5楼

商品信息

应用范围:其他 品牌:裕正 型号:PE3015C-230 频率特性:中频 电源相数:单相 铁心形状:M 冷却形式:干式 铁心结构:心式 绕组数目:自耦 *潮方式:开放式 冷却方式:自然冷式 外形结构:立式 电压比:1(V) 效率(η):10(KVA) 额定功率:111(Hz)

供应变压器铁芯

PE2125系列灌封变压器产品特点:

1.CE 真空灌封

2.UL94V-0自熄灭阻燃材料

3.固有能限设计 双槽股芯设计

4.介电强度4000vrms工作频率50/60HZ

应用领域:

电力载波电能表

预付费式电能表

家电电器

仪器仪表

型号

输入电压

输出电压

PE2125A-220

220V

9V/200 mA

10.5V/30 mA

PE2125B-220

220V

13.5V/80mA

14V/25 mA

PE2125C-220

220V

10.5V/120 mA

PE2125D-220

220V

12V/120 mA

10.5V/50 mA

PE2125E-220

220V

11V/160 mA

PE2125G-220

230V

9V/350 mA

PE2125H-220

230V

12.5V/110 mA

变压器的*基本型式,包括两组绕有导线之线圈,并且彼此以电感方式称合一起。当一交流电流(具有某一已知频率)流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率之交流电压,而感应的电压大小取决于两线圈耦合及磁交链之程度。
  一般指连接交流电源的线圈称之为「线圈」(Primary coil);而跨于此线圈的电压称之为「电压.」。在二次线圈的感应电压可能大于或小于电压,是由线圈与二次线圈问的「匝数比」所决定的。因此,变压器区分为升压与降压变压器两种。
  大部份的变压器均有固定的铁芯,其上绕有与二次的线圈。基于铁材的高导磁性,大部份磁通量局限在铁芯里,因此,两组线圈藉此可以获得相当高程度之磁耦合。在一些变压器中,线圈与铁芯二者间紧密地结合,其与二次电压的比值几乎与二者之线圈匝数比相同。因此,变压器之匝数比,一般可作为变压器升压或降压的参考指标。由于此项升压与降压的功能,使得变压器已成为现代化电力系统之一重要附属物,*输电电压使得长途输送电力更为经济,至于降压变压器,它使得电力运用方面更加多元化,吾人可以如是说,倘无变压器,则现*业实无法*目前发展的现况。
电子变压器除了体积较小外,在电力变压器与电子变压器二者之间,并没有明确的分界线。一般提供60Hz电力网络之电源均*庞大,它可能是涵盖有半个洲地区那般大的容量。电子装置的电力限制,通常受限于整流、放大,与系统其它组件的能力,其中有些部份属放大电力者,但如与电力系统发电能力相比较,它仍然归属于小电力之范围。
  各种电子装备常用到变压器,理由是:提供各种电压**系统正常操作;提供系统中以不同电位操作部份得以电气隔离;对交流电流提供高阻*,但对直流则提供低的阻*;在不同的电位下,维持或修饰波形与频率响应。「阻*」其中之一项重要概念,亦即电子学特性之一,其乃预设一种设备,即当电路组件阻*系从一*改变到另外的一个*时,其间即使用到一种设备-变压器。
  对于电子装置而言,重量和空间通常是一项努力追求之目标,至于效率、*性与*性,更是重要的考虑因素。变压器除了能够在一个系统里占有显著百分比的重量和空间外,另一方面在*性方面,它亦是衡量因子中之一要项。在它应用方面的差别,使得电力变压器并不适合应用于电子电路上.
  变压器---利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器是电能传递或作为信号传输的重要元件 (石家庄金山变压器有限公司)
  1.变压器 ---- 静止的电磁装置
  变压器可将一种电压的交流电能变换为同频率的另一种电压的交流电能
  电压器的主要部件是一个铁心和套在铁心上的两个绕组。
变压器原理
  与电源相连的线圈,接收交流电能,称为绕组
  与负载相连的线圈,送出交流电能,称为二次绕组
  绕组的 二次绕组的
  电压相量 U1 电压相量 U2
  电流相量 I1 电流相量 I2
  电动势相量 E1 电动势相量 E2
  匝数 N1 匝数 N2
  同时交链,二次绕组的磁通量的相量为 φm ,该磁通量称为主磁通
  2.理想变压器
  不计、二次绕组的电阻和铁耗,
  其间耦合系数 K=1 的变压器称之为理想变压器
  描述理想变压器的电动势平衡方程式为
  e1(t) = -N1 d φ/dt
  e2(t) = -N2 d φ/dt
  若、二次绕组的电压、电动势的瞬时值均按正弦规律变化,
  则有
  不计铁心损失,根据能量守恒原理可得
  由此得出、二次绕组电压和电流*值的关系
  令 K=N1/N2,称为匝比(亦称电压比),则
  二.变压器的结构简介
  1.铁心
  铁心是变压器中主要的磁路部分。通常由含硅量较高,厚度为 0.35 \0.3\0.27 mm,
  表面涂有*缘漆的热轧或冷轧硅钢片叠装或绕制而成
  铁心分为铁心柱和横片俩部分,铁心柱套有绕组;横片是闭合磁路之用
  铁心结构的基本形式有心式和壳式两种
  2.绕组
  绕组是变压器的电路部分,
  它是用双丝包(纸包)*缘扁线或漆包圆线绕成
  变压器的基本原理是电磁感应原理,现以单相双绕组变压器为例说明其基本工作原理:当侧绕组上加上电压Ú1时,流过电流Í1,在铁芯中就产生交变磁通Ø1,这些磁通称为主磁通,在它作用下,两侧绕组分别感应电势É1,É2,感应电势公式为:E=4.44fNØm
  式中:E--感应电势*值
  f--频率
  N--匝数
  Øm--主磁通*大值
  由于二次绕组与绕组匝数不同,感应电势E1和E2大小也不同,当略去内阻*压降后,电压Ú1和Ú2大小也就不同。
  当变压器二次侧空载时,侧*流过主磁通的电流(Í0),这个电流称为激磁电流。当二次侧加负载流过负载电流Í2时,也在铁芯中产生磁通,力图改变主磁通,但电压不变时,主磁通是不变的,侧就要流过两部分电流,一部分为激磁电流Í0,一部分为用来平衡Í2,所以这部分电流随着Í2变化而变化。当电流乘以匝数时,就是磁势。
  上述的平衡作用实质上是磁势平衡作用,变压器就是通过磁势平衡作用实现了一、二次侧的能量传递。
  变压器技术参数 对不同类型的变压器都有相应的技术要求,可用相应的技术参数表示.如电源变压器的主要技述参数有:额定功率、额定电压和电压比、额定频率、工作温度等级、温升、电压调整率、*缘性能和*潮性能,对于一般低频变压器的主要技述参数是:变压比、频率特性、非线性失真、磁屏蔽和静电屏蔽、效率等.
  A.电压比:
  变压器两组线圈圈数分别为N1和N2,N1为初级,N2为次级.在初级线圈上加一交流电压,在次级线圈两端就会产生感应电动势.当N2>N1时,其感应电动势要比初级所加的电压还要高,这种变压器称为升压变压器:当N2<N1时,其感应电动势低于初级电压,这种变压器称为降变压器.初级次级电压和线圈圈数间具有下列关系:式中n称为电压比(圈数比).当n<1时,则N1>N2,V1>V2,该变压器为降压变压器.反之则为升压变压器.
  B.变压器的效率:
  在额定功率时,变压器的输出功率和输入功率的比值,叫做变压器的效率,即η=(P2÷P1)x100%式中η为变压器的效率;P1为输入功率,P2为输出功率.
  当变压器的输出功率P2等于输入功率P1时,效率η等于100%,变压器将不产生任何损耗.但实际上这种变压器是没有的.变压器传输电能时总要产生损耗,这种损耗主要有铜损和铁损.
  铜损是指变压器线圈电阻所引起的损耗.当电流通过线圈电阻发热时,一部分电能就转变为热能而损耗.由于线圈一般都由带*缘的铜线缠绕而成,因此称为铜损.
  变压器的铁损包括两个方面.一是磁滞损耗,当交流电流通过变压器时,通过变压器硅钢片的磁力线其方向和大小随之变化,使得硅钢片内部分子相互摩擦,放出热能,从而损耗了一部分电能,这便是磁滞损耗.另一是涡流损耗,当变压器工作时.铁芯中有磁力线穿过,在与磁力线垂直的平面上就会产生感应电流,由于此电流自成闭合回路形成环流,且成旋涡状,故称为涡流.涡流的存在使铁芯发热,消耗能量,这种损耗称为涡流损耗.
  变压器的效率与变压器的功率等级有密切关系,通常功率越大,损耗与输出功率就越小,效率也就越高.反之,功率越小,效率也就越低.
  C变压器的功率
  变压器铁心磁通和施加的电压有关。在电流中励磁电流不会随着负载的增加而增加。虽然负载增加铁心不会饱和,将使线圈的电阻损耗增加,*过额定容量由于线圈产生的热量不能及时的散出,线圈会损坏,假如你用的线圈是由*导材料组成,电流*不会引起发热,但变压器内部还有漏磁引起的阻*,但电流*,输出电压会下降,电流越大,输出电压越低,所以变压器输出功率不可能是无限的。假如你又说了,变压器没有阻*,那么当变压器流过电流时会产生*大电动力,很容易使变压器线圈损坏,虽然你有了一台功率无限的变压器但不能用。只能这样说,随着*导材料和铁心材料的发展,相同体积或重量的变压器输出功率会*,但不是无限大!

[编辑本段]
怎样判别电源变压器参数

电源变压器标称功率、电压、电流等参数的标记,日久会脱落或消失。有的市售变压器*标注任何参数。这给使用带来*大不便。下面介绍无标记电源变压器参数的判别方法。此方法对选购电源变压器也有参考价值。
  一、识别电源变压器
  1. 从外形识别 常用电源变压器的铁芯有E形和C形两种。E形铁芯变压器呈壳式结构(铁芯包裹线圈),采用D41、D42优质硅钢片作铁芯,应用广泛。C形铁芯变压器用冷轧硅钢带作铁芯,磁漏小,体积小,呈芯式结构(线圈包裹铁芯)。
  2. 从绕组引出端子数识别 电源变压器常见的有两个绕组,即一个初级和一个次级绕组,因此有四个引出端。有的电源变压器为*交流声及其他干扰,初、次级绕组间往往加一屏蔽层,其屏蔽层是接地端。因此,电源变压器接线端子至少是4个。
  3. 从硅钢片的叠片方式识别 E形电源变压器的硅钢片是交**的,E片和I片间不留空气隙,整个铁芯严丝合缝。音频输入、输出变压器的E片和I片之间留有*的空气隙,这是区别电源和音频变压器的*直观方法。至于C形变压器,一般都是电源变压器。
  二、功率的估算
  电源变压器传输功率的大小,取决于铁芯的材料和横截面积。所谓横截面积,不论是E形壳式结构,或是E形芯式结构(包括C形结构),均是指绕组所包裹的那段芯柱的横断面(矩形)面积。在测得铁芯截面积S之后,即可按P=S2/1.5估算出变压器的功率P。式中S的单位是cm2。
  例如:测得某电源变压器的铁芯截面积S=7cm2,估算其功率,得P=S2/1.5=72/1.5=33W剔除各种误差外,实际标称功率是30W。
  三、各绕组电压的测量
  要使一个没有标记的电源变压器利用起来,找出初级的绕组,并区分次级绕组的输出电压是*基本的任务。现以一实例说明判断方法。
  例:已知一电源变压器,共10个接线端子。试判断各绕组电压。
  *步:分清绕组的组数,画出电路图。
  用万用表R×1挡测量,凡相通的端子即为一个绕组。现测得:两两相通的有3组,三个相通的有1组,还有一个端子与其他任何端子*通。照上述测量结果,画出电路图,并编号。
  从测量可知,该变压器有4个绕组,其中标号⑤、⑥、⑦的是一带抽头的绕组,⑩号端子与任一绕组均不相通,是屏蔽层引出端子。
  第二步:确定初级绕组。
  对于降压式电源变压器,初级绕组的线径较细,匝数也比次级绕组多。因此,像图4这样的降压变压器,其电阻*大的是初级绕组。
  第三步:确定*次级绕组的电压。
  在初级绕组上通过调压器接入交流电,缓缓升压直至220V。依次测量各绕组的空载电压,标注在各输出端。如果变压器在空载状态下较长时间不发热,说明变压器性能基本完好,也进一步验证了判定的初级绕组是正确的。
  四、各次级绕组*大电流的确定
  变压器次级绕组输出电流取决于该绕组漆包线的直径D。漆包线的直径可从引线端子处直接测得。测出直径后,依据公式I=2D2,可求出该绕组的*大输出电流。式中D的单位是mm。

[编辑本段]
电源变压器的种类及特点

一般常用电源变压器的分类可归纳如下:
  (1)按相数分:
  (1)单相电源变压器:用于单相负荷和三相电源变压器组。
  (2)三相电源变压器:用于三相系统的升、降电压。
  (2)按冷却方式分:
  (1)干式电源变压器:依靠空气对流进行冷却,一般用于局部照明、电子线路等小容量电源变压器。
  (2)油浸式电源变压器:依靠油作冷却介质、如油浸自冷、油浸风冷、油浸水冷、强迫油循环等。
  (3)按用途分:
  (1)电力变压器:用于输配电系统的升、降电压。
  (2)仪用变压器:如电压互感器、电流互感器、用于测量仪表和继电保护装置。
  (3)试验变压器:能产生高压,对电气设备进行高压试验。
  (4)特种变压器:如电炉变压器、整流变压器、调整变压器等。
  (4)按绕组形式分:
  (1)双绕组变压器:用于连接电力系统中的两个电压等级。
  (2)三绕组变压器:一般用于电力系统区域变电站中,连接三个电压等级。
  (3)自耦变电器:用于连接不同电压的电力系统。也可做为普通的升压或降后变压器用。
  (5)按铁芯形式分:
  (1)芯式变压器:用于高压的电力变压器。
  (2)非晶合金变压器:非晶合金铁芯变压器是用新型导磁材料,空载电流下降约80%,是目前*效果较理想的配电变 压器,*适用于农村电网和发展中地区等负载率较低的地方。
  (3)壳式变压器:用于大电流的*变压器,如电炉变压器、电焊变压器;或用于电子仪器及电视、收音机等的电源变压器。

[编辑本段]
电源变压器的工作原理

1[2]是输出和输入共用一组线圈的*变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高.
  2其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈```一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。
  3自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于和二次的那部分绕组称为公共绕组,自耦变压器的其余部分称为串联绕组,同容量的自藕变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的*和输送容量的*,自藕变压器由于其容量大、损耗小、造价低而得到广泛应用.
  由电磁感应的原理可知,变压器并不要有分开的原绕组和副绕组,只有一个线圈也能*变换电压的目的.在图1中,当变压器原绕组W1接入交流电源U1时,变压器原绕组每匝的电压降,电压平均分配在变压器原绕组1,2,变压器副绕组W2的电压等于原绕组每匝电压乘以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行偶合的变压器就叫自藕变压器,又叫单圈变压器.
  普通变压器的原,副绕组是互相*缘的,只用磁的联系而没有电的联系,依线圈组数的不同,这种变压器又可分为双圈变压器或多圈变压器.由电磁感应的原理可知,并不要有分开的原绕组和副绕组,只有一个线圈也能*变换电压的目的.在图1中,当原绕组W1接入交流电源U1时,原绕组每匝的电压降,电压平均分配在原绕组1,2,,副绕组W2的电压等于原绕组每匝电压乘以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行偶合的变压器称为自耦变压器,又叫单圈变压器.

[编辑本段]
电源变压器的工作原理

1[2]是输出和输入共用一组线圈的*变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高.
  2其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈```一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。
  3自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于和二次的那部分绕组称为公共绕组,自耦变压器的其余部分称为串联绕组,同容量的自藕变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的*和输送容量的*,自藕变压器由于其容量大、损耗小、造价低而得到广泛应用.
  由电磁感应的原理可知,变压器并不要有分开的原绕组和副绕组,只有一个线圈也能*变换电压的目的.在图1中,当变压器原绕组W1接入交流电源U1时,变压器原绕组每匝的电压降,电压平均分配在变压器原绕组1,2,变压器副绕组W2的电压等于原绕组每匝电压乘以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行偶合的变压器就叫自藕变压器,又叫单圈变压器.
  普通变压器的原,副绕组是互相*缘的,只用磁的联系而没有电的联系,依线圈组数的不同,这种变压器又可分为双圈变压器或多圈变压器.由电磁感应的原理可知,并不要有分开的原绕组和副绕组,只有一个线圈也能*变换电压的目的.在图1中,当原绕组W1接入交流电源U1时,原绕组每匝的电压降,电压平均分配在原绕组1,2,,副绕组W2的电压等于原绕组每匝电压乘以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行偶合的变压器称为自耦变压器,又叫单圈变压器.
  自耦变压器中的电压,电流和匝数的关系和变压器,既:U1/U2=W1/W2=I2/I1=K
  自耦变压器*大特点是,副绕组是原绕组的一部分(如图1的自耦降压变压器),或原绕组是副绕组的一部分(如图2的自耦升压变压器).
  自藕变压器原,副绕组的电流方向和普通变压器一样是相反的.
  在忽略变压器的激磁电流和损耗的下,可如下关系式
  降压:I2=I1+I,I=I2-I1
  升压:I2=I1-I,I=I1-I2
  P1=U1I1,P2=U2I2
  式中:
  I1是原绕组电流,I2是副绕组电流
  U1是原绕组电压,U2是副绕组电压
  P1是原绕组功率,P2是副绕组功率

联系方式

企业名:杭州裕正电子有限公司

类型:生产加工

电话: 0571-85229805

联系人:曾军

地址:浙江杭州西湖经济科技园西园三路10号1幢5楼

提示:您在维库电子市场网上采购商品属于商业贸易行为。以上所展示的信息由卖家自行提供,内容的真实性、准确性和合法性由发布卖家负责,请意识到互联网交易中的风险是客观存在的。请广大采购商认准带有维库电子市场网认证的供应商进行采购!

电子元器件产品索引: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9