IEEE - 面对未来的AI:三大挑战

类别:其他  出处:网络整理  发布于:2024-01-04 15:17:01 | 83 次阅读

    

    当AI如ChatGPT在2022年末突然崭露头角时,不仅展现了AI的惊人进步,还描绘出了一个充满可能性的未来,重新定义着我们的工作、学习和娱乐方式。尽管AI的潜力对许多人来说显而易见,但其中隐藏了一些棘手的伦理和风险问题。

  应对这些风险就像解开一幅巨大的拼图,这幅拼图定义着我们的时代。因此,许多AI领域的正积极倡导制定一些基本规则,以确保AI的使用受到约束。毕竟,AI的应用不仅仅是口号,它已经变得至关重要。
  我们正在深入研究们的见解,解开围绕他们的道德困境,并研究如何影响人工智能和其他技术的未来。
  伦理与偏见
  人工智能系统需要使用数据进行训练。但数据集往往是由有偏见或不准确的人制作的。因此,人工智能系统会使偏见长期存在。在招聘实践和刑事司法中尤其如此,管理这些偏见可能很困难。
  IEEE会员Kayne McGladrey表示:“我们可以手动或自动审计软件代码中的隐私缺陷。同样,我们可以审计软件代码的安全缺陷。但是,我们目前无法审计软件代码是否存在道德缺陷或偏见,即将出台的大部分法规将对人工智能模型的结果进行歧视性筛选。”
  改变工作方式
  随着生成人工智能的兴起,公司正在重新构想如何完成工作。虽然很少有人认为需要创造力和判断力的工作可以完全自动化,但人工智能可以提供帮助。例如,当作家陷入困境时,生成型人工智能可以提供对话想法。它不能充当你的律师,但一个好的律师可以利用生成人工智能来撰写动议的初稿,或进行研究。
  IEEE会员Todd Richmond说:“我们需要共同弄清楚什么是“人类的努力”,我们愿意把什么交给算法,比如制作音乐、电影、行医等。”
  在全球技术的调查(https://transmitter.ieee.org/impact-of-technology-2024/)中,其中50%的受访者表示,将AI整合到现有工作流程中存在困难,是他们对于在2024年使用生成式AI的前三大担忧之一。
  准确性和过度依赖性
  生成型人工智能可以”自信”地阐述事实,但问题是这些事实并不总是准确的。对于所有形式的人工智能,很难弄清楚该软件究竟是如何得出结论的。
  在调查中,59%的受访者表示,“过度依赖人工智能和其潜在的不准确性”是他们组织中人工智能使用的首要问题。
  部分问题在于训练数据本身可能不准确。
  IEEE终身会士Paul Nikolich说:“验证训练数据很困难,因为来源不可用,且训练数据量巨大。”
  人工智能可能越来越多地被用于关键任务、拯救生命的应用。
  “在我们使用人工智能系统之前,我们必须相信这些人工智能系统将安全且按预期运行,”IEEE会士Houbing Song说。
  在2024年及以后,预计将大力确保人工智能结果更加准确,用于训练人工智能模型的数据是干净的。
  了解更多:IEEE计算机杂志的一篇新文章认为,人工智能的发展必须以保护隐私、公民权利和公民自由的方式进行,同时也要促进公平、问责、透明和平等的原则。
关键词:AI

全年征稿 / 资讯合作

稿件以电子文档的形式交稿,欢迎大家砸稿过来哦!

联系邮箱:3342987809@qq.com

版权与免责声明

凡本网注明“出处:维库电子市场网”的所有作品,版权均属于维库电子市场网,转载请必须注明维库电子市场网,https://www.dzsc.com,违反者本网将追究相关法律责任。

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

热点排行